MECHANICAL ENGINEERING

Chair: Ronald A. L. Rorrer
Office: North Classroom 2024
Telephone: 303-315-7500
Website: ucdenver.edu/mechanical

Overview
Mission Statement
The mission of the Department of Mechanical Engineering is to contribute to the economic development of the state of Colorado and the Denver metropolitan area by providing high-quality bachelor’s, master’s (BS, MS and MEng) and PhD programs in mechanical engineering for a diverse group of working students.

Program Objectives
The programs offered by the Department of Mechanical Engineering of the University of Colorado Denver can be completed in the afternoon and evening hours to accommodate both working and traditional students. The department seeks to graduate a diverse population of students with bachelor’s and master’s degrees, who within a few years of graduation are able to:

- be employed by a diverse group of industries, research laboratories and educational institutions
- pursue careers in engineering, interdisciplinary areas, research and education
- pursue postgraduate education and advanced degrees

Graduate
The Department of Mechanical Engineering offers graduate courses, a master of science (MS) (http://catalog.ucdenver.edu/cu-denver/graduate/schools-colleges-departments/college-engineering-design-computing/mechanical-engineering/mechanical-engineering-ms/) degree program and a master of engineering (MEng) (http://catalog.ucdenver.edu/cu-denver/graduate/schools-colleges-departments/college-engineering-design-computing/mechanical-engineering/mechanical-engineering-meng/) program. In addition, the multidisciplinary engineering and applied science doctor of philosophy (http://catalog.ucdenver.edu/cu-denver/graduate/schools-colleges-departments/college-engineering-design-computing/engineering-applied-science-phd/) degree is available through the Department of Mechanical Engineering. The areas of research interest in which a student may undertake studies at the Denver campus include manufacturing processes, fluid mechanics, solid mechanics, bioengineering, energy thermodynamics and composite materials.

As a student in the MS or MEng program, you must meet with your graduate advisor before or during your first semester and design a sequence of elective courses that form a coherent program plan.

Concurrent Bachelor’s/Master’s Degrees
Students wishing to obtain a BS degree with a major in mechanical engineering and either the MS or the MEng degree in mechanical engineering may do so with up to 6 semester hours of 5000-level or above courses applying to both degrees. The 5000-level courses must meet the degree requirements for the graduate degree sought and must be suitable technical electives for the undergraduate degree. This option is open only for students seeking both degrees at CU Denver. Students must meet admission requirements to be accepted into the graduate program. Completion of two 5000-level courses does not guarantee admission into the graduate program. Please see an advisor for restrictions and guidelines.

Engineering and Applied Science PhD Program
The engineering and applied science doctor of philosophy program consists of studies in engineering and engineering-related disciplines. It is a multidisciplinary program in keeping with the interdisciplinary nature of modern research. The degree is conferred by the College of Engineering, Design and Computing. However, applicants to the degree program apply to and enter the program through one of four departments, called the host department, of the college. The applicant chooses his/her host department based on his/her intended primary concentration of study. The four departments of the college that serve as host departments are Civil Engineering, Computer Science and Engineering, Electrical Engineering and Mechanical Engineering. Each host department offers several concentrations. The secondary concentration can be chosen from any remaining department of the college, including Bioengineering. The secondary concentration may also be chosen from another college/school at CU Denver. The course work in the primary and secondary areas must consist of ten courses (30 semester hours). In addition to other courses, a student must take at least five courses in his/her primary area of concentration and at least three courses in a secondary area of concentration. Other courses may be recommended by the student’s advisor. Research that spans across two or more of the five college departments is strongly encouraged and is a major strength of the program.

Admissions to Mechanical Engineering
All applicants should apply online at: www.ucdenver.edu/academics/colleges/Graduate-School/prospective/Pages/apply.aspx (http://www.ucdenver.edu/academics/colleges/Graduate-School/prospective/Pages/apply.aspx)

Inquiries about graduate study in mechanical engineering should be addressed to:

CU Denver Department of Mechanical Engineering
Campus Box 112
P.O. Box 173364
Denver, CO 80217-3364

Applicants who are not citizens or permanent residents of the United States should make application through the Office of International Admissions

Office of International Admissions
Campus Box 185
P.O. Box 173364
Denver, CO 80217-3364

(See the International Students (http://catalog.ucdenver.edu/cu-denver/graduate/international-admissions/) section of the catalog.) All applicants for admission must submit complete credentials as outlined in the instructions that accompany the application materials.

Programs
- Engineering and Applied Science, PhD (http://catalog.ucdenver.edu/cu-denver/graduate/schools-colleges-departments/engineering-engineering-design-computing/mechanical-engineering/engineering-applied-science-phd/)
- Mechanical Engineering, MEng (http://catalog.ucdenver.edu/cu-denver/graduate/schools-colleges-departments/mechanical-engineering-engineering-design-computing/mechanical-engineering/mechanical-engineering-mechnical-engineering-meng/)

Website: http://ucdenver.edu/mechanical
Mechanical Engineering (MECH) Courses

MECH 5001 - Seminar: Introduction to Research (1 Credit)
This course is intended to introduce graduate students to the fundamental skills and methods needed to perform research. Topics include writing technical papers, presentation skills, testing methodology, hypothesis creation and more. Max Hours: 1 Credit.

MECH 5020 - Biomechanics (3 Credits)
Static and dynamic biomechanical analysis, effects of mechanical loading on bone and cartilage, design considerations in orthopaedic devices, muscle function, biomechanics of human movement, cardiovascular biomechanics. Restriction: Graduate standing or permission of the instructor required. Cross-listed with MECH 4020. Max hours: 3 Credits.

MECH 5024 - Mechanical Behavior of Materials (3 Credits)
Students will learn about the mechanical behavior of materials using a multi-scale, materials oriented approach. The course will relate how atomic and molecular mechanisms relate to macroscopic and continuum properties of materials across acute and long-term time scales. Restriction: Graduate standing or permission of the instructor required. Cross-listed with MECH 4024. Max hours: 3 Credits.

MECH 5030 - Advanced Biomechanics (3 Credits)
This course provides training in computational and experimental methods for biomechanical engineering analysis. Topics include finite element analysis of biological systems, orthopedic device design, medical imaging analysis, mechanical characterization of biological tissues, and biomechanics of human movement. Prereq: MECH 4020 or MECH 5020. Max Hours: 3 Credits.

MECH 5110 - Numerical Methods for Engineers (3 Credits)
Introduces numerical analysis. Solution of linear and nonlinear equation systems. Numerical methods for ordinary and partial differential equations. Engineering applications. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4110. Max Hours: 3 Credits.

MECH 5112 - Introduction to Internal Combustion Engines (3 Credits)
This course provides an introduction to the major characteristics of internal combustion engines and defines the major parameters used to describe the engine operation and design conditions. Students perform analysis of the thermal performance of the engines. Restriction: Graduate standing or permission of the instructor required. Cross-listed with MECH 4112. Max hours: 3 Credits.

MECH 5120 - Introduction to Computational Fluid Dynamics (3 Credits)
Introduction to computational fluid dynamics (CFD) and its applications in engineering. Prereq: MECH 5110. Max hours: 3 Credits.

MECH 5200 - Mechanical Behavior of Tissues (3 Credits)
Static and dynamic biomechanical analysis, effects of mechanical loading on bone and cartilage, design considerations in orthopaedic devices, muscle function, biomechanics of human movement, cardiovascular biomechanics. Restriction: Graduate standing or permission of the instructor required. Cross-listed with MECH 4020. Max hours: 3 Credits.

Faculty

Associate Professors:
R. Dana Carpenter, PhD, Stanford University
Kannan N. Premnath, PhD, Purdue University
Ronald A. L. Rorrer, PhD, Virginia Polytechnic Institute and State University, PE-COlarado
Samuel W. J. Welch, PhD, University of Colorado Boulder
Christopher M. Yakacki, PhD, University of Colorado Boulder

Assistant Professors:
Maryam Darbehesht (clinical teaching track), PhD, University of Denver
Guoying Dong, PhD, McGill University
Brecca Gaffney, PhD, University of Denver
Kai Yu, PhD, Georgia Tech

Senior Instructor:
Joseph F. Cullen Jr., MS, University of Colorado

Instructor:
Douglas Gallagher, BS Engineering Physics, Colorado School of Mines

Professors Emeriti:
James Gerdeen, PhD, Stanford University
Peter E. Jenkins, PhD, Purdue, MBA, Pepperdine, PE-Texas
J. Kenneth Ortega, PhD, University of Colorado Boulder

Associate Professor Emeritus:
B. Thomas Amberg, MS, University of Colorado
MECH 5114 - Designing with Composites (3 Credits)
Analysis and design of polymers and polymer-based composites. Failure criteria include static strength, stiffness, creep, fatigue, impact and fracture toughness. Design criteria include strength-to-weight ratio and cost-to-strength ratio. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4114. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5115 - Applied Plasticity and Creep (3 Credits)
Plastic deformation of materials applied to bulk and sheet metal manufacturing processes such as extrusion, rolling and sheet metal. Linear and nonlinear viscoelastic creep with applications to plates and shells. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4115. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5120 - Methods of Engineering Analysis (3 Credits)
Selected topics from real analyses with applications to engineering analyses. Topics include vector calculus, ordinary differential equations, partial differential equations and calculus of variations. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4120. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5121 - Introduction to Fluid Dynamics (3 Credits)
Physical properties of gases and liquids; kinematics of flow fields; equations describing viscous, heat-conducting Newtonian fluids. Exact solutions and rational approximations for low- and high-speed dissipative flows, surface and internal waves, acoustics, stability, and potential flows. Graduate standing or permission of instructor required. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5122 - Macroscopic Thermodynamics (3 Credits)
Axiomatic presentation of fundamentals of classical thermodynamics (first law); energy, work and heat. Equilibrium, reversible, and irreversible processes; entropy production and the second law. Applications to stability and phase equilibrium. Irreversible thermodynamics and the Onsager reciprocal relations. Restriction: Graduate standing or permission of instructor required. Max hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5123 - Introduction to Continuum Mechanics (3 Credits)
Cartesian tensor notation. Deformation, strain, strain rate and compatibility. Definition of stress vector and tensor. Fundamental balance laws of mass, momentum and energy; entropy production inequality. Constitutive equations for elastic, viscoelastic and plastic materials; ideal, compressible, and viscous fluids. Beltrami-Mitchell and Navier-Stokes equations. Restriction: Graduate standing or permission of instructor required. Max hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5124 - Yield-Limited Behavior of Materials (3 Credits)
Analysis of material behavior within the "elastic range" with emphasis on the phenomenon of yield and factors that influence it. Examination of the theory of dislocations; study of strengthening mechanisms in solids. Consideration of various time-dependent but reversible (inelastic) deformation phenomena. Presentation of appropriate engineering case studies to augment various topics. Graduate standing or permission of the instructor required. Prereq: MECH 5143 with a grade of B- or higher. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Prereq: MECH 5143 with a grade of B- or higher Restriction: Restricted to graduate standing or higher

MECH 5133 - Theory of Inelastic Materials (3 Credits)
Mathematical theory of linear viscoelasticity. Finite elements models. Solution of boundary-value problems in linear viscoelasticity. Non-Newtonian flow. Selected topics in nonlinear material behavior. Graduate standing or permission of the instructor required. Prereq: MECH 5143 with a B- or higher. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Prereq: MECH 5143 with a grade of B- or higher Restriction: Restricted to graduate standing or higher

MECH 5141 - Viscous Flow (3 Credits)
Viscous incompressible fluid flows. Topics include derivation of equations governing viscous compressible fluid motion; specializations to simple flows; boundary-layer theory; similarity solutions; introduction to turbulence and Reynolds stresses. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4141. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5142 - Statistical Thermodynamics (3 Credits)
Introduces the molecular interpretation and calculation of thermodynamic properties of matter, thermodynamic probability, distribution functions, Schrodinger wave equations and solutions and ensemble theory. Applications to ideal and real gases, solids, liquids, radiation, conduction electrons, and chemical equilibrium. Restriction: Graduate standing or permission of instructor required. Max hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5143 - Theory of Elasticity (3 Credits)
Review of the basic equations of linear theory of elasticity. St. Venant torsion and flexure. Plane strain, plane stress, and generalized plane stress. Application of conformal mapping and Fourier transform techniques. Restriction: Graduate standing or permission of instructor required. Max hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5144 - Plasticity and Creep (3 Credits)
Inelastic deformation of materials such as metals, alloys, glasses, composites and polymers from the phenomenological and structural point of view. Case studies of plastic and creep deformations in engineering materials. Prereq: MECH 5143 with a grade of B- or higher and graduate standing or permission of the instructor required. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Prereq: MECH 5143 with a grade of B- or higher Restriction: Restricted to graduate standing or higher
MECH 5161 - Compressible Flow (3 Credits)
Energy, continuity, and momentum principles applied to compressible flow; one-, two-, and three-dimensional subsonic, supersonic and hypersonic flows. Normal and oblique shocks, and method of characteristics. Prereq: MECH 5141 with a grade of B- or higher and graduate standing or permission of the instructor required. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Prereq: MECH 5141 with a B- or higher
Restriction: Restricted to graduate standing or higher

MECH 5162 - Heat Transfer I (3 Credits)
Review of equations governing transport of heat by conduction and radiation. Analytical and numerical solution of boundary value problems representative of heat conduction in solids. Radiation properties of solids, liquids and gases; transport of heat by radiation. Prereq: Graduate standing or permission of instructor required. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5163 - Dynamics (3 Credits)
Review of Newtonian dynamics, Lagrange's equation for particles, systems and rigid bodies. Conservative and non-conservative systems, moments of inertia, principal axes, angular momentum and Euler equations. Illustrations from spinning bodies, including tops, gyrocompass and rotating machinery. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4163. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5166 - Computerized Numerical Control (CNC) Manufacturing (3 Credits)
Modern manufacturing engineering concepts using computerized numerical control (CNC). The students learn state-of-the-art CNC methodologies, including digitizing, drawing, generating codes, and manufacturing using modern CNC machines. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4166. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5167 - Advanced Heat Transfer (3 Credits)
Using biomechanics is necessary in understanding the forces on the interface between the human athlete and his/her equipment. Prereq: Graduate standing or permission of the instructor required. Cross-listed with MECH 4176. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5168 - Computerized Numerical Control (CNC) Manufacturing (3 Credits)
This introductory Energy Conversion course introduces the basic background, terminology, and fundamentals of various forms of energy conversion. The topics covered will include: fuel cells, batteries, photovoltaic systems, solar thermal, and wind energy. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4177. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5169 - Introduction to Turbomachinery (3 Credits)
This introductory Turbomachinery course introduces the basic background, terminology, and fundamentals of various forms of turbomachines. The analysis of the various turbomachines will be focused on the performance of the turbomachine. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4179. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate students

MECH 5170 - Advanced Heat Transfer (3 Credits)
This course provides the foundations on the physics of microscale transport phenomena, where continuum effects break down, with applications in MEMS and NEMS. Topics include gas microflows, liquid microflows, surface tension-driven flows, electrokinetics transport, kinetic theory, simulation techniques, lattice Boltzmann methods. Restriction: Restricted to graduate students in the College of Engineering, Design and Computing. Max hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to graduate standing majors in the College of Engineering, Design and Computing

MECH 5171 - Finite Element Stress Analysis (3 Credits)
Students learn basic theory of finite element analysis (FEA) as it applies to stress analysis and design of mechanical components. Commercial package will be used giving students practical experience in the use of FEA. Graduate standing or permission of the instructor required. Prereq: MECH 5143 with a B- or higher. Cross-listed with MECH 4175. Max Hours: 3 Credits.
Grading Basis: Letter Grade
Prereq: MECH 5143 with a grade of B- or higher
Restriction: Restricted to graduate standing or higher
MECH 5188 - Introduction to Turbulence (3 Credits)
This course provides an introduction to turbulence, which is ubiquitous in nature and having a wide range of applications in engineering. The chaotic phenomena in such a class of flows poses major challenges in their understanding and modeling. The topics covered in this course include the statistical 4 tools and spectral analysis for turbulence description, basic equations of motion and flow instability, Reynolds decomposition of flow, energy transport by mean and turbulence motions, turbulence scales, vortex motion, classical turbulent flow configurations, such as free shear flows (jets, wakes, mixing layers) and wall bounded flows (channels, boundary layers), Kolmogorov and other phenomenological theories, and turbulence modeling. Restriction: Restricted to students with graduate standing, or permission of instructor. Max hours: 3 Credits.
Grading Basis: Letter Grade
Restriction: Restricted to students with graduate standing.
Typically Offered: Fall, Spring.

MECH 5208 - Special Topics (1-3 Credits)
Subject matter to be selected from topics of current technological interest. Credit to be arranged. Prereq: Graduate standing or permission of instructor required. Cross-listed with MECH 4208. Repeatable. Max hours: 9 Credits.
Grading Basis: Letter Grade
Repeatable. Max Credits: 9.

MECH 5228 - Special Topics (1-3 Credits)
Prereq: MECH 3032 (Electric Systems-Circuits Lab). Repeatable. Max hours: 9 Credits.
Grading Basis: Letter Grade
Repeatable. Max Credits: 9.

MECH 5238 - Special Topics (1-3 Credits)
Restriction: Graduate standing or permission of the instructor required. Repeatable. Max hours: 9 Credits.
Grading Basis: Letter Grade
Repeatable. Max Credits: 9.

MECH 5258 - Independent Study (1-3 Credits)
Available only through approval of the graduate advisor. Subjects arranged to fit needs of the particular student. Restriction: Graduate standing or permission of the instructor required. Repeatable. Max hours: 6 Credits.
Grading Basis: Letter Grade

MECH 5399 - Internship (1-3 Credits)
Students gain engineering design experience involving application of specific technical concepts and skills in a supervised industrial environment. (Must have approval from MECH faculty.) Max hours: 3 Credits.
Grading Basis: Letter Grade

MECH 5950 - Master's Thesis (1-6 Credits)
Restriction: Graduate standing or permission of the instructor required. Repeatable. Max hours: 8 Credits.
Grading Basis: Letter Grade with IP
Repeatable. Max Credits: 8.

MECH 5960 - Master's Report (3 Credits)
Master of Science in Engineering report. Students seeking the Master of Science in Engineering, and who do not choose to do a thesis, must complete an individual project of an investigative and creative nature under the supervision of a member of the graduate faculty. Restriction: Graduate standing or permission of the instructor required. Repeatable. Max hours: 6 Credits.
Grading Basis: Letter Grade with IP

MECH 5970 - Graduate Problem Course (3 Credits)
The graduate problem course is for the solution of specific problems in MECH specialty areas. Each student is assigned a set of problems of some difficulty requiring the use of the literature of the various areas covered. Prereq: 15 hours of graduate level courses in MECH. Max Hours: 3 Credits.
Grading Basis: Letter Grade

MECH 5990 - Doctoral Dissertation (1-10 Credits)
Restriction: Graduate standing or permission of the instructor required. Repeatable. Max hours: 10 Credits.
Grading Basis: Letter Grade with IP
Repeatable. Max Credits: 10.

MECH 6184 - Advanced Fluid Mechanics (3 Credits)
This course provides a description of the advanced concepts for understanding the physics of fluid motion under different regimes. Topics include kinematics, stresses, equation of motion, vorticity transport, low Reynolds number flow, irrotational flow, interfacial flow, acoustics&waves, hydrodynamic stability & transition, turbulent flow. Prereq: MECH 5141. Restriction: Restricted to students with graduate standing, or permission of instructor. Max Hours: 3 Credits.
Grading Basis: Letter Grade

MECH 8990 - Doctoral Dissertation (1-10 Credits)
Restriction: Graduate standing or permission of the instructor required. Repeatable. Max hours: 10 Credits.
Grading Basis: Letter Grade with IP
Repeatable. Max Credits: 10.

Additional Information: Report as Full Time.

Typically Offered: Fall, Spring.