MOLECULAR BIOLOGY (PHD)

Overview

The Molecular Biology Program is dedicated to providing rigorous training to its students in a supportive environment. Molecular Biology faculty are members of many different departments and are applying the techniques of molecular biology to answer questions in diverse areas. Molecular biology, the science of how living things work at the molecular level, has led the recent revolution in our understanding of human disease and gave birth to the biotechnology industry. In almost all aspects of modern biomedical research, a professional knowledge of molecular biology is essential. Our training program is designed to equip students for careers at the cutting edge of biology.

Admissions Requirements

To apply for admission applicants must submit the following:

- Online Graduate School application
 - Personal Statement
 - Research Experience explanation (more in-depth than what is provided in resume requirement)
 - Resume: The applicant’s current resume or curriculum vitae, including professional work/practice since graduating with a bachelor’s degree (or equivalent).
 - Diversity, Equity and Inclusion Statement
 - Three recommendations: to be completed by people who know your professional, academic and/or personal achievements or qualities well. As such, references must be from professional contacts, such as employers, supervisors, former faculty, preceptors, or professional colleagues.
 - Official Transcripts from all post-secondary colleges and/or universities attended by the applicant.

- Application Fee: A nonrefundable application fee of $50.00 (U.S. dollars). Checks or money orders should be made out to the University of Colorado.

- Interview: If selected, candidates will be contacted to attend a recruitment weekend, including interviewing with current MOLB Faculty and Students.

- Transcripts: Official transcripts from all post-secondary colleges and/or universities should be sent directly to:

University of Colorado Denver Graduate Admissions
Campus Box 163
PO Box 173364
Denver, CO 80217-3364

OR Electronic Transcripts should be sent to: graduateadmissions@ucdenver.edu

International students must meet ALL of the requirements above and those required by International Admissions.

Degree Requirements

First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMSC 7806</td>
<td>Core I: Foundations in Biomedical Sciences</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 7800</td>
<td>Advanced Topics in Molecular Biology</td>
<td>3-4</td>
</tr>
<tr>
<td>MOLB 7650</td>
<td>Research in Molecular Biology Section 001</td>
<td>1-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective (student choice)</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 8990 or MOLB 7650</td>
<td>1-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 8990 Doctoral Thesis in Molecular Biology</td>
<td>1-10</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Year 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOLB 7661 Molecular Biology Seminar</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MOLB 7650 Research in Molecular Biology Section 0V3</td>
<td>1-10</td>
<td></td>
</tr>
<tr>
<td>MOLB 7950 Informatics and Statistics for Molecular Biology</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 7801 Rigor and Reproducibility in Biomedical Research</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MOLB 7661 Molecular Biology Seminar Section 0V3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MOLB 7650 Research in Molecular Biology Section 0V3</td>
<td>1-10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective (student choice)</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLB 8990 Doctoral Thesis in Molecular Biology</td>
<td>1-10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year & Beyond</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Title</td>
<td>Hours</td>
</tr>
<tr>
<td>MOLB 8990 Doctoral Thesis in Molecular Biology</td>
<td>1-10</td>
<td></td>
</tr>
</tbody>
</table>

| Fall & Spring: 5 credits | 5-37 |
| Summer: 1 credit | |

Learning Objectives

The MOLB Program has defined five objectives that convey our approach to research and professional training:

Objective 1 is to provide broad training in foundational molecular and cellular biology with focused research opportunities in diverse disciplines (e.g., bioinformatics, cell biology, cancer biology, developmental biology, epigenetics, immunology, microbiology, RNA biology, and structural biology). Our broad interdisciplinary training is key to the success of our trainees and a defining feature of MOLB relative to other AMC
training programs. The scientific breadth of our faculty exposes our trainees to many different techniques and provides opportunities for students to combine different approaches to answer their own scientific questions. We cultivate a collegial environment across the program, encouraging intellectual exchange and collaboration between labs from many departments and measure our success by the number and quality of research publications produced by our trainees and the number of external grants that they are awarded based on their research.

Objective 2 is to provide student-oriented and well-balanced training that emphasizes development of creative and independent thinking, strong communication skills, and professional responsible conduct. A key to MOLB training is its focus on developing professional skills including teamwork, science communication, project management, and leadership. The MOLB Program incorporates many technical, operational, and professional elements to provide balanced training for our students.

Objective 3 is to develop and apply the newest techniques that drive advances in science. As the late Sydney Brenner articulated, “Progress in science depends on new techniques, new discoveries, and new ideas, probably in that order.” A primary objective of the MOLB Program is to position our graduates to lead the forefront of scientific technology deployment and development. We develop scientists who are well-versed in existing scientific techniques and capable of developing their own experimental approaches to answer new questions. We combine rigorous "wet" and "dry" laboratory training, intensive discussion of current literature, workshops, and mini-courses that focus on emerging techniques for molecular and cell biology research, and we measure our success by our trainees’ performance in preliminary and comprehensive examinations, and laboratory research.

Objective 4 is to create and sustain an inclusive and diverse research training environment. We value diversity in our program and the scientific community, and developed several approaches to increase the cultural, racial, and social diversity in the MOLB Program. Some of these include MOLB-specific recruitment and retention strategies and diversity training for our faculty and students.

Objective 5 is to promote the career advancement of our trainees and introduce them to a broad range of career choices. The MOLB program provides skills and opportunities for experiential learning needed to succeed in many science-related careers, including academic research, consulting, teaching, government and public policy, technology transfer, and professional elements to provide balanced training for our students.

Courses

BMSC 7806 - Core I: Foundations in Biomedical Sciences (6 Credits)
Course will focus on the fundamental principles of biomedical sciences. Lectures and recitations/discussions will primarily address the basics of molecular biology, biochemistry, genetics, cell biology and energetic principles. Course is typically limited to biomedical science PhD and BSBT MS students. Previously offered as IDPT 7806
Grading Basis: Letter Grade
Typically Offered: Fall.

BMSC 7810 - Core Topics in Biomedical Science (1-6 Credits)
Sections focus on different core topics in biomedical science, and will address subject areas such as protein structure and function, neurobiology, embryology, stem cell research, and cancer biology. Students can enroll in multiple Core Topic Courses topics in one semester. Previously offered as IDPT 7810.
Grading Basis: Letter Grade
Repeatable. Max Credits: 20.
AMC-PHD PhD Students only
Typically Offered: Fall.

MOLB 7650 - Research in Molecular Biology (1-10 Credits)
Research work in molecular biology. Prereq: Consent of the instructor.
Grading Basis: Letter Grade with IP
Repeatable. Max Credits: 99.
A-GRAD Restricted to graduate students only.
Typically Offered: Fall, Spring, Summer.

MOLB 7661 - Molecular Biology Seminar (1 Credit)
Seminar series provides a forum for the presentation of scientific experiments and information in molecular biology by faculty, postdoctoral fellows, graduate students and invited outside guest speakers.
Grading Basis: Letter Grade
A-GRAD Restricted to graduate students only.
Typically Offered: Fall, Spring.

MOLB 7800 - Advanced Topics in Molecular Biology (3-4 Credits)
Course instructs graduate students how to critically evaluate scientific literature. Course in 4 blocks; topics include nucleic acid, chromatin structure, DNA replication, RNA transcription, RNA processing, cell cycle control, genetics of model organisms. Papers chosen by instructors, presentations by students. Prereq: IDPT 7811, 7812, 7813, 7814, 7815.
Restriction: By Permission of instructor. Course offered in 4 blocks of 1 hour of credit each.
Grading Basis: Letter Grade
Repeatable. Max Credits: 4.
A-GRAD Restricted to graduate students only.
Typically Offered: Spring.

MOLB 7801 - Rigor and Reproducibility in Biomedical Research (1 Credit)
Course will integrate the concepts of rigor, repeatability and reproducibility by combining both wet and dry lab components focused on teaching these concepts and laboratory skills. We will seek to make these concepts routine considerations during the design and execution of any type of experiment. Instructor consent required.
Grading Basis: Pass/Fail Only
Repeatable. Max Credits: 3.
A-GRAD Restricted to graduate students only.
Typically Offered: Fall, Spring.

MOLB 7950 - Informatics and Statistics for Molecular Biology (4 Credits)
This course covers the design and analysis of common molecular biology experiments with thorough coverage of statistical and informatic approaches to data analysis. The course begins with a "boot camp" that covers use of shell programming, R/R Studio, and Python scripting in bioinformatics. Pre-Req: MOLB-PhD or CSDV-PhD students only
Grading Basis: Letter Grade
A-GRAD Restricted to graduate students only.
Typically Offered: Fall.
MOLB 8990 - Doctoral Thesis in Molecular Biology (1-10 Credits)
Doctoral thesis work in molecular biology. Prereq: Consent of Instructor.
Grading Basis: Letter Grade with IP
Repeatable. Max Credits: 99.
A-GRAD Restricted to graduate students only.
Additional Information: Report as Full Time.
Typically Offered: Fall, Spring, Summer.

PHCL 7605 - Responsible Conduct of Research (1 Credit)
The Department of Pharmacology in the University of Colorado School of Medicine organizes and offers an interactive course during the fall semester entitled "Responsible Conduct of Research". The course is designed to inform students, trainees and faculty to the NIH requirements for ethical and responsible research.
Grading Basis: Letter Grade
A-GRAD Restricted to graduate students only.
Typically Offered: Fall.

Policies
Please refer to the Graduate School Policies page (http://catalog.ucdenver.edu/cu-anschutz/schools-colleges-programs/graduate-school/#policiestext).

Program Calendar
MOLB still requires three lab rotations in a student's first year in the program, but the dates associated with the MOLB lab rotations differ from the other Basic Science PhD programs and the Graduate School Academic Calendar.

• The first rotation will start in the third week of October (for 2020 this will be October 19th) and will end on December 18th, just before end of the year holidays.
• Trainees will get one week off for Thanksgiving Holidays (extra week included for that).
• Second rotation would start second week of January (for 2021 will be January 11th) and will end on first week of March (for 2021 will be March 5th).
• Third rotation would start on second week of March (for 2021 will be March 8th) and end first week of May (for 2021 will be May 7th). The third rotation also includes and extra week for Spring Break. The MOLB 7800 course will be adjusted so it ends one week after the end of third rotation, mostly to allow students to focus completing and turning in their final MOLB 7800 projects.

Contact Us
Rytis Prekeris, Ph.D.
Program Director
rytis.prekeris@cuanschutz.edu
www.prekerislab.com (http://www.prekerislab.com)
@prekerislab (https://twitter.com/prekerislab/)

Sabrena Heilman
Program Administrator
sabrena.heilman@cuanschutz.edu | 303.724.3245

University of Colorado Anschutz Medical Campus
12801 E 17th Avenue
Mail Stop 8116
Aurora, CO 80045